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Neural computation

A ‘programming’ framework for recurrent  
neural networks

Manuel Beiran, Camille A. Spencer-Salmon & Kanaka Rajan

A ‘programming’-like approach provides a 
one-step algorithm to find network parameters 
for recurrent neural networks that can model 
complex dynamical systems.

Recurrent neural networks (RNNs) are foundational tools for perform-
ing tasks that require time-dependent computation. They make use of 
recurrent connections between individual network units to process 
sequential inputs and generate a wide range of dynamics. Moreover, 
they are ideal for tasks that require extensive distributed parallel  
processing such as determining whether a given maze has a solution1. 
However, the major obstacle to using RNNs for such complex compu-
tations is finding the right set of network parameters for each task.  
The most common approaches optimize recurrent networks via  
supervised training algorithms in which the network is simulated many 
times, processing a large number of different input–output pairs, and 
slowly correcting errors. In this issue of Nature Machine Intelligence, 
Kim and Bassett focus on an alternative approach, adopting tools 
from neuroscience and software development2. Their work presents 
an innovative method to design RNNs that are capable of perform-
ing complex computations based on the direct engineering of net-
work para meters. Unlike standard training techniques, this one-step 

algorithm determines appropriate network parameters analytically, 
effectively ‘programming’ network computations in a manner ana-
logous to how programming languages work on computer hardware.

The fact that RNNs (in particular, reservoir computers) can univer-
sally approximate any dynamical system has been shown theoretically 
decades ago3,4. However, this result lacked one important ingredient for 
practical use: how to find the right network parameters for universally 
approximating dynamics. The current standard training approach 
of defining a loss function and adjusting network parameters along  
the gradient direction, called backpropagation, has been used with 
remarkable success in fields such as language processing and systems 
neuroscience. This success is due among other factors to the avail ability 
of backpropagation algorithms (ADAM5), accessible software libraries 
for implementation (for example, pytorch6), progress in computing 
hardware, and careful selection of network architectures and hyper-
parameters. Perhaps overshadowed by the empirical success of this 
approach, alternative techniques for designing and optimizing neural 
networks, such as the neural engineering framework by Eliasmith et al.7, 
have received comparatively less attention. Neural engineering can 
find suitable network parameters via a one-step method that avoids 
simulating the network multiple times. Inspired by this approach,  
Kim and Bassett propose a specific ‘programming’ algorithm that 
allows recurrent neural networks to solve tasks. This algorithm comple-
ments popular gradient-based training paradigms. While programming 
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Fig. 1 | Programming of a recurrent neural network. Without needing to 
simulate multiple training epochs, Kim and Bassett propose a method for 
constructing RNNs to perform computational tasks. Given an RNN (top left) with 
fixed recurrent connectivity Wrec receiving (possibly time-varying) inputs x  and 
auxiliary inputs x̃  through input weights Win and W̃in respectively, the network 
produces an initial response r(t). The ‘programming’ algorithm then finds the 
output weights for the readout Wout and the recurrent loop W̃out to obtain the 

desired time-varying outputs o (t)(bottom left). The algorithm (right) leverages 
the relationship between the response of the hidden units in the network and  
the inputs and nonlinear combinations fm of the inputs (1). This relationship is 
described through the matrix R. In parallel, the desired outputs can be as well 
mapped to the inputs, through the matrix O (2). Finally, the mismatch between 
the desired and initial output are minimized, such that the programmed RNN 
matches both constraints (3).

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00674-w
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00674-w&domain=pdf


nature machine intelligence Volume 5 | June 2023 | 570–571 | 571

News & views

combined with others to implement more complex strategies. Future 
work will determine whether and how such emergent properties like 
generalization and modularity can be guaranteed with some specific  
programming code for RNNs, or whether other classes of neural  
architectures or training algorithms are required.

Overall, the creative approach by Kim and Bassett invokes a vast 
range of possibilities for engineering recurrent neural networks 
beyond gradient-based training. While the net advantages of such 
alternative algorithms will need to be considered in the context of their  
specific application (in terms of available hardware, end-goal, desired 
robustness and so on), only by considering a variety of complementary 
options will we be able to unlock the full potential of RNNs.
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RNNs requires a fair amount of user knowledge and its performance 
has not yet been shown to match training algorithms, it provides a 
path to operating networks in a fast, reliable and predictable manner.

Kim and Bassett’s central strategy for programming RNNs lies in 
randomly fixing some of the network parameters and subsequently 
inferring the remaining learnable parameters based on the target 
outputs and the fixed random parameters (Fig. 1, left). This program-
ming is implemented through a least-squares regression problem, and 
its solution often effectively relies on low-rank network connectivity8. 
The authors show that this method can accurately implement different 
dynamics by initializing the network at a fixed point, and approximating  
to first order the RNN’s response as a function of the input and trans-
formations of the input (Fig. 1, right). Such simple principles are then 
applied to build RNNs for a deft set of applications ranging from imple-
mentation of virtual machines, to logic gates and ping-pong video 
games, without the need for subsequent trial-and-error corrections 
of the network parameters.

In recent times, research in neural networks is expanding its focus 
beyond performance in computation towards additional emergent 
properties. One such emergent property is the study of inductive biases 
and generalization. For many real-world applications, it is important 
that RNNs not only solve predefined input–output mappings, but 
that they do so with appropriate priors, such that these networks are 
capable of generalizing to novel inputs while remaining robust to noise. 
For instance, a network should not fail when presented with adversarial 
inputs, will ideally remain stable to small perturbations, and should 
generalize smoothly to unseen examples. However, understanding  
how such emergent biases are shaped by the learning algorithm is 
currently a challenging problem in RNNs trained via backpropagation. 
Alternative methods for designing RNNs with simpler algorithms, such 
as the ‘programming’ of RNNs, may also simplify the study of such 
inductive biases in the future.

Another exciting research direction in neural networks is the 
emergence of compositionality: the property by which networks 
solving different computations can be flexibly combined such that 
the resulting network can make use of the abilities of the individual 
networks comprising it9,10. A promising result from Kim and Bassett is 
that they show how a network programmed to act as a logic gate can be 
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