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(ACC) is central to theories of affective

control, but how this area signals reward

is unknown. Here, we show that neurons

in subcallosal ACC, as well as

rostromedial striatum, preferentially use

temporally specific patterns of neural

activity to signal anticipated reward.
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SUMMARY
Functional neuroimaging studies indicate that interconnected parts of the subcallosal anterior cingulate cor-
tex (ACC), striatum, and amygdala play a fundamental role in affect in health and disease. Yet, although the
patterns of neural activity engaged in the striatum and amygdala during affective processing are well estab-
lished, especially during reward anticipation, less is known about subcallosal ACC. Here, we recorded neural
activity in non-human primate subcallosal ACC and compared this with interconnected parts of the basolat-
eral amygdala and rostromedial striatum while macaque monkeys performed reward-based tasks. Applying
multiple analysis approaches, we found that neurons in subcallosal ACC and rostromedial striatum preferen-
tially signal anticipated reward using short bursts of activity that form temporally specific patterns. By
contrast, the basolateral amygdala uses a mixture of both temporally specific and more sustained patterns
of activity to signal anticipated reward. Thus, dynamic patterns of neural activity across populations of neu-
rons are engaged in affect, especially in subcallosal ACC.
INTRODUCTION

Corticolimbic areas are central to neural circuit-based accounts

of affective processing.1 Neural activity within human amygdala,

striatum, and subcallosal anterior cingulate cortex (subcallosal

ACC) is related to the processing of affective stimuli and experi-

ences, both rewarding and aversive.2 Damage to or dysfunction

within each of these areas is also associated with marked

changes in affect.3,4

Of these areas, there has been a particular focus on subcal-

losal ACC because of its role in pathological changes of affect.

Both hyper- and hypoactivity within subcallosal ACC are bio-

markers of depression5,6 and activity normalizes following suc-

cessful pharmacotherapy7 or cognitive behavioral therapy

treatment.8 In schizophrenia, disrupted anticipatory reward re-

sponses within subcallosal ACC as well as striatum and amyg-

dala are related to the severity of anhedonia.9,10 This indicates

a specific role for this network of areas in modulating affective

responses in anticipation of positive events, such as rewards.

Consistent with this, lesions11 or overactivation of subcallosal

ACC12,13 disrupt autonomic arousal and behavior in anticipa-

tion of rewards in non-human primates. Thus, the circuit linking

subcallosal ACC, amygdala, and striatum is necessary for
affective behavior and specifically responding in anticipation

of reward.

Despite this central role for subcallosal ACC in affective

behavior, little is known about how neurons within primate sub-

callosal ACC signal rewards. Unlike striatum and amygdala,

where the patterns of neural activity related to impending re-

wards and punishments are well established,14,15 few neuro-

physiological investigations of primate subcallosal ACC are

available. Further, the findings from these studies are equivocal:

neurons in subcallosal ACC exhibit almost no encoding of im-

pending reward,16 more faithfully encode reward17 or are more

strongly modulated by sleep and wakefulness.18 Notably, a

mechanistic account for how subcallosal ACC contributes to

reward anticipation is lacking. One possibility is that sustained

activity in subcallosal ACC drives arousal through interaction

with other areas that directly control bodily states.19,20 Another

possibility is that subcallosal ACC provides a dynamic and

temporally specific signal to downstream areas that are then

used to sustain arousal in anticipation of reward.

To arbitrate between these two potential alternatives, we took

a circuit-level approach and recorded neural activity within sub-

callosal ACC, basolateral amygdala (BLA), and the part of

the striatum where both of these areas project, rostromedial
Neuron 111, 1–15, November 15, 2023 ª 2023 Elsevier Inc. 1

mailto:peter.rudebeck@mssm.edu
https://doi.org/10.1016/j.neuron.2023.07.012


Figure 1. Autonomic and behavioral responses in Pavlovian and instrumental tasks

(A) In the Pavlovian task, monkeys were required to maintain gaze on a centrally located red spot for 2.8–3.0 s to receive three small drops of juice reward. In 75%

of trials, one of three conditioned stimuli, either CS+juice, CS+water, or CS–, were presented before a trace interval. If either the CS+juice or CS+water was presented,

then 0.5 mL of the corresponding fluid reward, either juice or water, was delivered at the end of the trace interval. Intertrial interval, ITI.

(B) In the instrumental task, monkeys were required to maintain gaze on a centrally located spot and then choose between two of the stimuli and their corre-

sponding rewards from the Pavlovian task.

(C) Mean (± SEM) percentage change in heart rate for monkeys D and H on neutral, CS+juice, CS+water, or CS– trials. Inset violin plots show the mean heart rate

during the period after stimulus onset (gray shaded region) and (mean ± standard error of themean [SEM]). Horizontal linesmark significant pairwise comparisons

at p < 0.05.

(D) Choice behavior during the instrumental task. Choice latencies (left) and proportion of choices (right) during the three different trial types. Error bars showSEM.
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striatum.21,22 Recordings were made in two macaque monkeys

performing Pavlovian trace-conditioning and instrumental

choice tasks for fluid rewards. The Pavlovian trace-conditioning

task was adapted from one previously shown to be sensitive to

lesions of subcallosal ACC.11 Here, we report that (1) more neu-

rons in BLA compared with subcallosal ACC or rostromedial

striatum signal anticipated reward through sustained activity,

and (2) individual neurons in subcallosal ACC as well as BLA

and rostromedial striatum all exhibit temporally specific patterns

of activity in anticipation of reward.

RESULTS

Behavioral and autonomic correlates of anticipated
reward
We trained two macaque monkeys (monkeys H and D) on a

modified version of the Pavlovian trace-conditioning task previ-

ously shown to be sensitive to lesions of subcallosal ACC (Fig-

ure 1A). First, monkeys were extensively trained to maintain

gaze on a centrally presented spot for 2.8–3 s for three small

drops of fluid. Then a Pavlovian trace-conditioning procedure
2 Neuron 111, 1–15, November 15, 2023
was superimposed on this fixation task. On 75%of fixation trials,

conditioned stimuli (CS) of equal luminance associated with sub-

sequent delivery of either juice (CS+juice), water (CS+water), or

nothing (CS�) were presented for 1 s with equal probability

shortly after fixation was acquired. If CS+juice or CS+water stimuli

were presented a large drop of the corresponding reward

(0.5 mL) was delivered 0.5–0.6 s after stimulus offset. Presenta-

tions of the CS� were associated with no reward being deliv-

ered. In the remaining 25% of trials, no CS was presented.

Heart rate and pupil size were monitored during the task to

look for correlates of sustained arousal in anticipation of reward.

Both subjects exhibited sustained changes in heart rate and

pupil size after stimulus presentation in anticipation of rewards

that would be received compared with the neutral condition

(Figures 1C and S1). The pattern of autonomic response differed

between heart rate and pupil size measures and was unique to

each subject. Heart rate was elevated to both reward-predicting

cues in monkey D compared with CS� or neutral (Figure 1C,

left, effect of trial, F(3,6480), p < 0.0001, pairwise tests,

CS+juice > CS+water > CS� > neutral, p < 0.05), whereas it was

elevated for CS� and CS+water in monkey H compared with
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both neutral and CS+juice (Figure 1C, right, F(3,4258) = 12.14;

p < 0.0001, pairwise tests, CS� or CS+water > CS+juice or neutral,

p > 0.05). Such variability between subjects is not so surprising

given the human literature where autonomic responses to affec-

tive stimuli are known to be heterogeneous.23 What is critical is

that each subject’s responseswere internally consistent and sta-

ble over time. In keeping with previous reports,24 pupil size was

often constricted in anticipation of receiving juice relative to wa-

ter and CS� but dilated during the period where monkeys

received the reward (Figure S1).

To confirm that the autonomic responses exhibited by our sub-

jects were related to anticipated reward and that subjects had

learned the CS-outcome relationship, subjects performed an

instrumental choice task (Figure 1B). This task used the same

stimulus-reward pairings presented during the Pavlovian task,

and the two tasks were predominantly run one after the other in

recording sessions. In the instrumental choice task, both sub-

jects chose CS+juice over either CS+water or CS� on more than

95%of trials (Figure 1D). A similar preferencewasapparent on tri-

als where they could only choose between CS+water and CS. The

choice response latency, the amount of time from the go signal to

the selection of one of the stimuli, was also modulated by sub-

jects’ preferences. Monkeys were faster to respond on trials

where a CS+juice stimulus was presented (Figure 1D, effect of

reward, F(1,3) = 13.44, p<0.00001). Thus,monkeys exhibiteddif-

ferential patterns of sustained autonomic arousal after stimuli

were presented but exhibited choices and response latencies

that were similar, consistent, and qualitatively matched the moti-

vational significance of the stimuli.

Neural activity in subcallosal ACC, BLA,
and rostromedial striatum during Pavlovian
trace-conditioning task
To look for neural correlates of stimulus-linked reward anticipa-

tion, we recorded the activity of 656 single neurons and multi-

unit responses in subcallosal ACC (n = 222), BLA (n = 220),

and rostromedial striatum (n = 214) while monkeys performed

the Pavlovian trace-conditioning task. Full details of recordings

by area are presented in Table S1.

In all three areas, the firing rate ofmany neurons varied accord-

ing to the potential for fluid rewards after stimulus presentation.

For example, the activity of the subcallosal ACC neuron in Fig-

ure 2A exhibited maximal firing to the CS+juice and progressively

lower firing to CS+water and CS� respectively following stimulus

presentation. There was little change in firing rate when condi-

tioned stimuli were absent on neutral trials. Neurons in BLA and

rostromedial striatum similarly discriminated between the stimuli

presented and the potential reward type (Figure 2A, middle and

right), but the example neuron in BLA has elevated firing starting

just after stimulus onset until reward delivery (middle, Figure 2A).

At the population level, following presentation of the stimuli, a

greater proportion of neurons in BLA encoded the different task

conditions than those in either subcallosal ACC or rostromedial

striatum (Gaussian approximation test with false discovery rate

correction, p < 0.0167, Figures 2B and 2C). During the trace

period when animals had to remember if a reward-predicting

stimulus had been presented, more BLA neurons encoded im-

pending reward delivery than in either subcallosal ACC or rostro-
medial striatum (Figures 2B and 2C). Note that in Figure 2C the

proportion of subcallosal ACC neurons encoding the task condi-

tions was statistically different to BLA in nearly all of the stimulus,

trace, and rewards periods, although it exceeded chance in all of

these periods (compare blue and dashed line). This indicates

that when pooled across time, subcallosal ACC neurons encode

reward anticipation, but they do not so do in the same sustained

manner, as in BLA.

Next, we investigated whether neurons in the three areas pre-

dominantly signaled reward conditions by either increasing or

decreasing activity during the stimulus period. We found that

neurons in both subcallosal ACC (increase/decrease: 30/16)

and BLA (increase/decrease: 60/39) were more likely to increase

activity in response to the different conditions, whereas the

opposite was true in rostromedial striatum (increase/decrease:

27/38). Despite this variation between areas, none of the propor-

tions for the three areas were statistically different from an even

split (all three comparisons, c2 < 1.65, p > 0.05).

Finally, we conducted two additional analyses on neurons clas-

sified as encoding during the period of time after stimulus presen-

tation using the same sliding ANOVA approach that we detail

above in order to further characterize the types of reward signals.

First, we looked for neurons that discriminated cued conditions

that would lead to reward as opposed to those that would not

(i.e., CS+juice andwater vs. CS� and neutral). Fromhere onwe refer

to neurons classified by this analysis as encoding reward pres-

ence. For the second, we looked for neurons that discriminated

between the different types of reward (i.e., CS+juice vs. CS+water).

From here onwe refer to neurons classified by this analysis as en-

coding reward type. Note by conducting two independent ana-

lyses it is possible for a neuron to be classified as significantly

discriminating both reward presence and type.

Conducting these additional analyses revealed that there were

differences between the type of reward encoding between sub-

callosal ACC, BLA, and rostromedial striatum (Figure 2E). Specif-

ically, a greater proportion of neurons in BLA compared with

either subcallosal ACC or rostromedial striatum encoded both

the presence and type of reward (yellow pie area, both compar-

isons, c2 > 3.05, p < 0.003). Similar comparisons of the propor-

tion of neurons encoding reward presence or type in subcallosal

ACC and rostromedial striatum failed to find any differences be-

tween areas (c2 < 1, p > 0.3). A similar set of analyses conducted

on the reward period produced fewer clear distinctions between

areas. In summary, a higher proportion of neurons in BLA

compared with subcallosal ACC and rostromedial striatum

signaled the type of reward in the stimulus period, further high-

lighting the stronger encoding of reward in this area.

To return to addressing our two competing hypotheses con-

cerning the mechanisms engaged during reward anticipation,

we next looked at whether encoding was more sustained or dy-

namic across the three recorded areas. In contrast to neurons in

BLA, anticipated reward encoding in subcallosal ACC as in-

dexed by the percent explained variance was less sustained

(Figure 3, bottom). Indeed, when we quantified the length of

anticipated reward encoding in classified neurons across the

three areas, BLA neurons exhibited longer encoding in anticipa-

tion of reward than either subcallosal ACC or rostromedial stria-

tum (Kruskal-Wallis test on number of significant bins in stimulus
Neuron 111, 1–15, November 15, 2023 3
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Figure 2. Neural activity in subcallosal ACC, BLA, and rostromedial striatum during the Pavlovian task

(A) Spike density functions and raster plots depicting the activity of example neurons recorded within subcallosal ACC (left), BLA (middle), and rostromedial (rm)

striatum (right).

(B) Percentage of neurons in subcallosal ACC, BLA, and rostromedial striatum classified by a sliding ANOVA as encoding the different task conditions

during either the baseline, stimulus 1st/2nd half, trace interval, or the reward period. The percentage classified during the baseline period indicates the false

discovery rate.

(C) Time course of stimulus-reward encoding in subcallosal ACC (blue), BLA (red), and rostromedial striatum (black) following the presentation of the conditioned

stimuli. Red and blue dots at the top indicate significant differences in the proportion of neurons between areas (p < 0.0167). Dotted line depicts the data-derived

false discovery rate at each time point.

(D) Location of recorded neurons in subcallosal ACC (top, sagittal view), rostromedial striatum (middle, coronal view), and BLA (bottom, coronal view). Insets

show the location of electrodes on T1-weighted MRIs targeting each of the three structures. Each dot represents a neuron. Red and green dots denote neurons

classified as encoding trial type during the combined stimulus/trace or reward interval, respectively.

(E) Percentage of classified neurons in subcallosal ACC, BLA, and rostomedial striatum that also signaled the presence or absence of reward (CS+ versus CS�,

green), the reward type (CS+juice versus CS+water, red), both (yellow), or were simply task responsive (orange) during the period after stimulus presentation.
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and trace period, c2 > 23.45, p < 0.001, BLA versus either sub-

callosal ACC or rostromedial striatum, c2 > 9.36, p < 0.005, Fig-

ure 3, top). There was no difference between the length of en-

coding in subcallosal ACC and rostromedial striatum (p > 0.05).

Structural MRI scans with recording electrodes in place (Fig-

ure 2D) and reconstructions based on these scans confirmed
4 Neuron 111, 1–15, November 15, 2023
that recording locations were well distributed within the areas

targeted. Thus, our data indicate that there are differences in

the level of sustained encoding for reward across the three

brain areas recorded; BLA exhibits longer encoding than

both rostromedial striatum and subcallosal ACC. Taken

together, this result appears to argue against the hypothesis



Figure 3. Timing and length of encoding of the different trial types in subcallosal ACC, BLA, and rostromedial striatum

Percent explained variance (PEV) associated with the different conditions for each neuron (bottom) and counts of the number of significant bins (top) for sub-

callosal ACC (left), BLA (middle), and rostromedial striatum (right) relative to stimulus and reward onset. In the plots of PEV (bottom), neurons are sorted according

to the first bin in which they were classified as being significantly modulated. Lighter or ‘‘hotter’’ colors are associated with higher explained variance. Because of

the variable trace interval, data are temporally realigned for the reward period, and there is a period that is intentionally left blank/dark blue between 1,500 and

1,600 ms. Histograms (top) of the length of encoding for neurons classified as encoding in each area.

ll
Article

Please cite this article in press as: Young et al., Temporally specific patterns of neural activity in interconnected corticolimbic structures during reward
anticipation, Neuron (2023), https://doi.org/10.1016/j.neuron.2023.07.012
that subcallosal ACC uses sustained activity to encode im-

pending reward.

Neural activity in subcallosal ACC, BLA, and
rostromedial striatum during instrumental choice
The absence of sustained encoding in subcallosal ACC in the

Pavlovian task could theoretically be because such encoding

is only present in settings that require instrumental actions to

specific locations to obtain reward. Encoding of both reward

and stimulus location in subcallosal ACC during instrumental

tasks suggests that action contingency could be a key factor.25

To address this possibility, we recorded the activity of 421 single

neuron and multi-unit responses in subcallosal ACC (n = 109),

BLA (n = 144), and rostromedial striatum (n = 168) while monkeys

performed the instrumental choice task where they chose be-

tween pairs of stimuli that had been presented in the Pavlovian

trace-conditioning task on each trial. A full breakdown of this in-

formation is provided in Table S2.

When monkeys had to choose between options by making an

eyemovement to obtain a reward, the firing rate ofmany neurons

across the three recorded areas varied with the identity of the

chosen reward, either juice or water (Figures 4A and 4B). Few

neurons encoded the movement direction that monkeys would

make or the interaction between chosen reward and movement

direction (Figure S3). Additional analyses also confirmed that en-

coding was best characterized by reward outcome as opposed

to aspects of choice difficulty.
Similar to the Pavlovian task, neurons in BLA signaled the

chosen reward to a greater extent than both subcallosal

ACC and rostromedial striatum (Gaussian approximation test

with false discovery rate correction, p < 0.0167, Figure 4C).

Again, the length of encoding within BLA was greater than in

both subcallosal ACC and rostromedial striatum, but in the

instrumental task, this difference did not reach statistical sig-

nificance (p > 0.1, Figure S4). Indeed, unlike the Pavlovian

task, there was little sustained encoding of reward in any of

the areas. In summary, when monkeys had to make instru-

mental actions to receive rewards, neurons in subcallosal

ACC again did not preferentially use sustained encoding to

signal anticipated reward.

Temporally specific patterns of neural activity in
subcallosal ACC, BLA, and rostromedial striatum
If neurons in subcallosal ACCor rostromedial striatum are not us-

ing a sustained encoding scheme to signal impending rewards,

what is the nature of the mechanism engaged? Mounting evi-

dence indicates that temporally specific patterns of activity

within a population of neurons may be a fundamental principle

of signaling information in both cortical and subcortical struc-

tures.26–30 Note that we are distinguishing temporally specific

patterns of neural activity from ‘‘sequences’’ of neural activity,

as the latter has a clear definition based on identifying patterns

in simultaneously recorded activity. Qualitatively, neurons in

subcallosal ACC exhibit temporally punctate bursts of encoding
Neuron 111, 1–15, November 15, 2023 5
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Figure 4. Neural activity in subcallosal ACC, BLA, and rostromedial striatum during the instrumental choice task

(A) Spike density functions and raster plots depicting the activity of example neurons recorded within subcallosal ACC (left), BLA (middle), and rostromedial (rm)

striatum (right). The color code shows the different trial types.

(B) Percentage of neurons in subcallosal ACC, BLA, and rostromedial striatum classified by a sliding ANOVA as encoding the trial types during baseline, stimulus

period 1st/2nd half, or reward period. The percentage classified during the baseline period indicates the false discovery rate.

(C) Time course of encoding in subcallosal ACC (blue), BLA (red), and rostromedial striatum (black) following the presentation of the conditioned stimuli. Red and

blue dots at the top indicate significant differences in the proportion of neurons between areas (p < 0.0167, Gaussian approximation test with false discovery rate

correction). Dotted line depicts the data-derived false discovery rate at each time point.

(D) Location of recorded neurons. Same conventions as in Figure 2.
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that tile the time interval from stimulus onset to the end of the

trace period when visualized and sorted at the population level

(Figure 3). We thus sought to determine whether these patterns

of activity in subcallosal ACC as well as BLA and rostromedial

striatum might form reproducible temporally specific patterns.

First, to confirm that the patterns of encoding are present in

raw firing patterns and not simply in the explained variance, we

computed the difference in firing rate between each neuron’s

‘‘preferred’’ and ‘‘non-preferred’’ condition in the Pavlovian

task (Figure 5A). This approach is analogous to defining a recep-

tive field for each neuron.26 Further aligning these differences in

activity by the center of mass revealed that the majority of neu-

rons in subcallosal ACC and rostromedial striatum exhibited

punctate changes in activity, a prerequisite if temporally specific

patterns of neural activity are engaged to signal anticipated

reward (Figures 5A and 5B).31 By contrast, neurons in BLA ex-
6 Neuron 111, 1–15, November 15, 2023
hibitedmore sustained changes in firing that were longer in dura-

tion than the other two areas (Figure 5B, effect of group,

F(1,202) = 3.27, p < 0.05; post hoc tests BLA versus ether sub-

callosal ACC or rostromedial striatum, p < 0.05, subcallosal

ACC vs. rostromedial striatum, p > 0.1).

If neurons in each area form a temporally specific pattern of

activity, then individual neurons should have specific times at

which they signal impending reward, and this timing should be

stable irrespective of the trials that are analyzed. Thus, we next

looked at whether neurons across the three areas had specific

time points at which they encoded impending reward and how

stable/reliable these time points were. To ensure statistical po-

wer, we selected all neurons that were classified as encoding im-

pending reward in the Pavlovian task that had been recorded for

at least 70 completed trials (subcallosal ACC: n = 36; BLA: n = 93;

rostromedial striatum: n = 64). We then randomly sampled 50%
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Figure 5. Sequential patterns of neural activity in subcallosal ACC, BLA, and rostromedial striatum

(A) Mean firing rate difference between preferred and anti-preferred trial type for neurons classified as encoding the different trial types in subcallosal ACC, BLA,

and rostromedial (rm) striatum. Each line represents a single neuron. Firing rate differences are center of mass aligned. Lighter or hotter colors are associated with

higher differences in firing rate. Solid-colored lines are the mean across the population of neurons in each area.

(B) Mean (± SEM) peak normalized firing rate difference between preferred and anti-preferred trial types for subcallosal ACC (blue), BLA (red), and rm striatum

(black). Inset figure shows log of mean duration of encoding. * denotes p < 0.05.

(C) Density of maximum significant encoding times across 500 runs for individual neurons classified as encoding the different trial types in subcallosal ACC (left),

BLA (middle), and rostromedial striatum (right). Each colored line represents a single neuron, and neurons were sorted according to the time of maximumdensity.

(D) Mean max bin for first and second 50% of trials for subcallosal ACC (left), BLA (middle), and rm striatum. Inset histograms show the distribution of mean

difference in bins between the first and second 50% of trials.
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of the available trials and determined the point of maximal en-

coding using the previously described sliding ANOVA. The prob-

ability distribution of maximal encoding time points for each

neuron for 500 such subsamples in subcallosal ACC, BLA, and

rostromedial striatum is shown in Figure 5C sorted by the timing

of maximal encoding.

Neurons predominantly had specific times at which they en-

coded different trial types, and we confirmed that these

maximal encoding time points were statistically different from

circularly shuffled data for all neurons (chi-squared test on

maximal encoding time, p < 0.05). Extending this analysis, for

each neuron, we next compared whether maximum encoding

times for one-half of the trials drawn at random were different

to the other half of trials and repeated this process 500 times.

For 96% of neurons, there was no difference in maximum

encoding times between the two sets of trials (Figure 5D,

Kruskal-Wallis test, p < 0.0167, differences found in subcallosal

ACC 2/36 = 5.71%, BLA 3/93 = 3.23%, rostromedial striatum

2/64 = 3.13%). Taken together, these analyses suggest that indi-

vidual neurons in all areas encoded reward with a robust prefer-

ence for a particular moment in time prior to reward delivery, a

feature that would be expected if temporally specific patterns

of activity are engaged to signal reward.

To further test the hypothesis that neurons, especially those in

subcallosal ACC, are forming temporal temporally specific pat-

terns of activity to encode reward, we computed a sequential

matching index (MI) adapted from Ji and Wilson32 for each

area. This numbering approach can be used to compare two pat-

terns of activity in the same population of neurons, by deter-

mining whether each possible pair of neurons appears in the

same or opposite order between two patterns of activity. The re-

sulting matching index, which is equal to the difference between

the number of pairs in the same and opposite orders divided by

the total number of pairs, is equal to 1 for a perfect match,�1 for

a perfect replay of the pattern in opposite order, and 0 for a per-

fect mixture between same and opposite orderings. Briefly, we

subsampled 50% of the trials for each neuron, determined the

time of maximal encoding, and numbered each neuron accord-

ing to its position in the temporally specific pattern within each

area. This temporal ordering was then compared with the

same analysis conducted on the other 50% of trials, and the

MI metric was computed. This process was repeated 500 times

and comparedwith the same analysis conducted on randomized

data. This analysis revealed that neurons in all three areas

exhibited stable ordering that was above chance (Figure 6A,

subcallosal ACC, MI = 0.2196, p < 0.035; BLA MI = 0.3064,

p < 0.0004; rostromedial striatumMI = 0.2188, p < 0.005). These

patterns were also consistent across monkeys (Figure S5). Thus,

neurons in each of the areas recorded from exhibit stable tempo-

ral ordering at the population level, indicative of a temporally

specific code.

Finally, because we analyzed neurons across multiple days it

is possible that cells in each area encode at a specific time point

each day and that we are simply sorting this across-day vari-

ability into a temporally specific pattern of neural activity. To

address this, we looked for individual recording sessions

where more than two neurons in each area were recorded simul-

taneously. Figure 6B shows the diverse time points of maximal
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encoding of 6, 3, and 5 simultaneously recorded neurons from

single recording sessions in subcallosal ACC, BLA, and rostro-

medial striatum, respectively that were classified as encoding

reward. Within each area, the maximal encoding time points

for each neuron were predominantly different to the other neu-

rons recorded that day (Figure 6C, Kruskal-Wallis test,

p < 0.01). Thus, within all areas recorded neurons exhibited

different points of maximal encoding, this was temporally spe-

cific and rarely overlapped with other neurons recorded in the

same session. Taken together, our analyses indicate that neu-

rons in all three recorded areas exhibit patterns of temporally

specific activity that are stable and reproducible, even within a

single session.

Unsupervised identification of temporally specific
patterns of neural activity in subcallosal ACC, BLA,
and rostromedial striatum
All of the foregone analyses identifying temporally specific pat-

terns of neural activity were conducted on neurons previously

classified as encoding the different trial types in the Pavlovian

task. If the firing patterns of neurons are truly temporally specific,

however, then a greater proportion of neurons should be

engaged in these dynamic activity patterns, as it is the timing,

not the number of spikes that signal different aspects of the

task. Thus, we next investigated whether distinct patterns of

neural activity could be identified in pseudopopulations of all of

the recorded neurons, not just those classified as encoding the

different task conditions.

Here, we applied an unsupervised computational approach,

sequence non-negative matrix factorization (seqNMF), that has

been validated in data from rodents and song birds to extract

recurring sequences or patterns of activity (Figure 7).33 Unlike

principal-component analysis and clustering, which are typically

limited to modeling synchronous activity, seqNMF can model

and identify extended spatiotemporal patterns of activity that

are referred to as factors. seqNMF is an extension of convolu-

tional NMF (convNMF)34 and reduces the probability that a

redundant factor will be extracted from the data by adding a

cross orthogonality cost term, l (l optimization, Figures 7B

and 7C). Fitting seqNMF to neural activity time-series data out-

puts n unique factors each represented by a column vector w

and their temporal loadings h, a row vector representing the

timing and amplitude of those individual factors when they are

detected. Thus, this approach is more scalable than existing

techniques aimed at capturing cross-correlations between pairs

of neurons as it can potentially identify multiple spatiotemporal

patterns or factors in neural activity, and the amplitude of each

factor on a trial gives ameasure of the prominence of that pattern

of neural activity (Figures 7G and 7H).

Here, we used seqNMF to determine whether there were sta-

tistically reproducible temporally specific patterns of neural ac-

tivity in subcallosal ACC, BLA, and rostromedial striatum of

each individual subject. Taking such an approach controlled

for individual differences, and because seqNMF has the poten-

tial to identify unique factors and their amplitudes, it also meant

that we might be able to identify patterns of activity unique to

each monkey. We applied seqNMF to the firing rates of neurons

from 0 to 1,500 ms after stimulus onset that had at least 20
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Figure 6. Within session specificity of encoding and changes in encoding length across tasks

(A) Distribution of matching indices for subcallosal ACC (left), BLA (middle), and rostromedial striatum (right). Shuffled data are in gray, and actual data are in

corresponding colors.

(B) Density of maximum significant encoding times across 500 runs for individual neurons classified as encoding the different trial types in subcallosal ACC (left),

BLA (middle), and rostromedial (rm) striatum (right) in a single session. Each colored line represents a single neuron, and neurons were sorted according to their

maximum density. Black lines represent the density of maximal encoding time points for circularly shuffled data.

(C) Statistical comparison of the maximal encoding time points for each of the neurons in (B) using a Kruskal-Wallis test. Lighter colors indicate higher level of

statistical significance.
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instances for each of the CS+juice, CS+water, and CS� trials irre-

spective of whether they were classified as encoding the

different trial types. This meant that a total of 115, 124, and

100 neurons in monkey D and 59, 68, and 83 in monkey H

from subcallosal ACC, BLA, and rostromedial striatum respec-

tively were combined into pseudopopulations. Spike trains

were smoothed with a 150 ms half Gaussian, and parameters

were optimized to extract unique and reproducible factors over

20 training and testing runs (Figures 7C and S6).

Using seqNMF, we identified unique factors related to tempo-

rally specific patterns of neural activity in all three areas during the

stimulus and trace periods of the task (Figures 7 and 8). Themean

amplitude, as measured by the temporal loadings, and the

number of factors identified were, however, different between
subcallosal ACC, BLA, and rostromedial striatum and subjects

(Figures 7G, 7H, 8E, and 8F). This indicates that dynamic patterns

of activity across the population of neurons signaled different as-

pects of the task. It also potentially reveals subtle inter-subject

differences between the previously identified patterns of tempo-

rally specific activity. Importantly, factors were very rarely identi-

fied in any of the recorded areas within the ITI (unfilled bars,

Figures 7D, 8A, and 8B), when the spike times were randomly

shuffled, or when spike activity was circularly shifted in time (Fig-

ure S6). Below we describe the factors identified.

Subcallosal ACC

A single factor could be reliably discerned from the neurons re-

corded in subcallosal ACC in both monkeys, and in monkey D

where the most neurons were available this factor was closely
Neuron 111, 1–15, November 15, 2023 9
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Figure 7. Schematic of factor identification

in neural activity data using seqNMF

(A) An example set of neural activity recorded from

124 neurons in BLA of monkey D (top right). Data

are from the 6 trials from each of the three different

cued trial types, CS+juice (red), CS+water (yellow),

and CS� (purple).

(B) Convolutional NMF models this neural activity

data as a neuron-by-time matrix over the sum of K

matrices. Matrices constructed for each trial are

the product of two components: a non-negative

matrix Wk of dimension N by L that stores a

sequential pattern of the N neurons at L time lags.

(C) Lambda optimization for BLA neurons recorded

from monkey D, where reconstruction (red) and

collection costs (blue) are plotted against each

other. seqNMF is a refinement of convolutional

NMF as it optimizes a penalty term, l that removes

redundant factors. l is optimized by determining

the point at which correlation and reconstruction

costs cross (denoted by dotted line where red and

blue curves cross).

(D) When applied to the data recorded in BLA,

seqNMF identified one factor in monkey H and two

factors in monkey D that correspond to temporally

specific patterns of neural activity.

(E and F) Reconstructions of the two statistically

significant factors for monkey D across the 124

recorded neurons.

(G and H) Bar plots of the mean temporal loadings

in BLA from significant factors for each monkey.

Connected symbols denote temporal loadings for

trial types from the individual runs with each factor.
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associated with the anticipation of juice delivery (Figures 8A, 8C,

8E, and S7). Figure 8C shows a single factor identified in the ac-

tivity of neurons in subcallosal ACC frommonkey D. Reconstruc-

tion of pseudoensemble spiking activity for this factor on three

held-out CS+juice, CS+water, and CS� trials, with the time-

resolved temporal loadings shown above each trial are shown

in (Figure S7A). In monkey D, this factor had the highest ampli-

tude on CS+juice trials and was equal on CS� and CS+water trials

(mean temporal loadings, effect of trial type, F(2,38) = 152.1,

p < 0.0001, post hoc tests, CS+juice > CS+water or CS�,
10 Neuron 111, 1–15, November 15, 2023
p < 0.002, Figure 8E, right). For monkey

H, there was no difference between the

temporal loadings for the individual trial

types (effect of trial type, F(2,32) = 0.74,

p > 0.48, Figure 8E, left).

BLA

Significant factors were identified in the

neural activity recorded from BLA in

both monkeys (Figure 7D). In monkey

H, a single factor was found whereas in

monkey D, two unique factors were iden-

tified (Figure 7D). The activity of sorted

neurons in the two factors identified in

monkey D are shown in Figures 7E

and 7F. As can be seen in the recon-

structions of individual trials, the first fac-
tor was seen on all trial types and was highly reproducible (Fig-

ure S7B). For this factor, the amplitude was equivalent on

CS+juice, CS+water, and CS� trials (effect of trial type,

F(2,44) = 0.62, p > 0.5, Figure 7G, right) indicating that it was

not associated with the expected outcome (juice, water, or

nothing), but instead simply registered the appearance of a

stimulus. Reconstruction of the second factor shows that it

was predominantly associated with CS+juice trials and was

largely absent on CS+water or CS� trials (Figure S7C, effect

of trial type, F(2,44) = 145.4, p < 0.0001; Figure 7H). This is
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Figure 8. Factors identified in pseudopopu-

lations of subcallosal ACC and rostromedial

striatum neurons by seqNMF

(A and B) Histograms of the number of significant

factors identified from the 20 of training and testing

runs of seqNMF for monkeys H and D in subcallosal

ACC and rostromedial striatum. Factors identified

from CS/trace (gray) and ITI (dashed line) area

shown.

(C and D) Reconstruction of significant extracted

factors from subcallosal ACC (C, monkey D) and

rostromedial striatum (D, monkey H). Within each

factor, neurons are sorted according to the time

point of their peak activation. The period shown is

from 0 to 1,500 ms after stimulus onset, which in-

cludes both stimulus and trace periods.

(E and F) Bar plots of the mean temporal loadings

from significant factors in subcallosal ACC and

rostromedial striatum for each monkey. Connected

symbols denote temporal loadings for trial types

from the runs with factors.
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similar to what was seen in subcallosal ACC, where the ampli-

tude of the single temporally specific pattern of neural activity in

monkey D was highest on CS+juice trials (Figures 8C and 8E).

In the neurons recorded from BLA in monkey H a single factor

was most often recovered (Figures 7D and 7G, left). This differ-

ence betweenmonkeysmay be related to the number of neurons

available for analysis. Approximately half the number were avail-

able from monkey H as compared with monkey D (124 versus

68), and an analysis subsampling the number of neurons in mon-

key D potentially supports this view (Figure S8). Unlike inmonkey

D, the temporal loadings for the factor identified in the BLA of

monkey H did not discriminate between the different trial types

(effect of trial type, F(2,56) = 1.24, p < 0.3, Figure 8E, right).

Note that there were no differences in the proportion of BLA neu-
rons encoding the different trial types be-

tween monkeys D and H (Figure S2). This

indicates that it was not simply the case

that neurons in monkey H did not discrim-

inate between the different conditions.

Thus, individual differences in the factors

or the number of neurons available for

analysis may explain the differences be-

tween animals.

Rostromedial striatum

In rostromedial striatum, where equivalent

numbers of neurons were available for

analysis a single, highly reproducible fac-

tor was observed in both monkeys D and

H (Figures 8B, 8D, and 8F). Reconstruc-

tion of this factor on spiking data shows

that it was closely associated with antici-

pation of reward delivery (Figures S7D

and S7E). Temporal loadings for this fac-

tor in both monkeys were higher on rew-

arded CS+juice and CS+water trials comp-

ared with CS� trials (monkeys D and H,

effect of trial type, both Fs > 8.78,
p < 0.0001, post hoc comparison, CS+juice/CS+water > CS�,

Figure 8F). In monkey H, the temporal loadings for this factor

not only differentiated between rewarded and unrewarded trials

but also discriminated between CS+juice and CS+water (CS+juice

versus CS+water, c2 = 5.16, p < 0.05). This pattern potentially in-

dicates that this factor scaled with the motivational significance

of the available rewards, although the same analysis between

CS+water and CS+juice in monkey D failed to reach statistical

significance (c2 < 1, p > 0.3). Thus, the factor identified in ros-

tromedial striatum discriminates rewarded from unrewarded

conditions, and in monkey H it also discriminated between all

three conditions.

In summary, applying seqNMF to our data revealed that (1) all

recorded neurons, not just those classified as encoding the
Neuron 111, 1–15, November 15, 2023 11
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different trial types, contribute to task-specific neural dynamics

through the specific timing of their activity, and (2) unique pat-

terns of activity were engaged to signal different aspects of

anticipated reward, and such patterns were most consistently

seen across subjects in rostromedial striatum.

DISCUSSION

Corticolimbic structures are essential for autonomic and behav-

ioral responses in anticipation of receiving reward. We found that

neurons in BLA exhibited longer, more sustained encoding

compared with both subcallosal ACC and rostromedial striatum

in anticipation of reward (Figures 2, 3, and 4). By contrast,

reward-related activity of single neurons in subcallosal ACC as

well as rostromedial striatum was primarily characterized by

temporally specific punctate bursts of activity prior to reward de-

livery (Figures 3, 5, and 6). Next, we applied an unsupervised and

unbiased computational approach, seqNMF.33 We identified

distinct and reproducible factors corresponding to temporally

specific patterns in the activity of pseudopopulations of all neu-

rons recorded from subcallosal ACC, BLA, and rostromedial

striatum (Figures 7 and 8). In summary, our data reveal that

temporally specific patterns of neural activity encode reward

anticipation in interconnected cortical and limbic areas, espe-

cially subcallosal ACC.

Encoding of anticipated reward in cingulate-amygdala-
striatal circuits
Evidence from human neuroimaging studies in healthy individ-

uals,5,35 people with psychiatric disorders,10,36 as well as

anatomical,37 and functional studies in non-human primates11,12

all point to a central role for subcallosal ACC in modulating affect

and specifically reward anticipation. Despite this seemingly cen-

tral role for subcallosal ACC in affective responses, prior neuro-

physiology studies looking for signals of anticipated reward in

macaque subcallosal ACC have reported virtually no encoding

of anticipated reward,16 by comparison to amygdala,14 stria-

tum,15 and other parts of the medial frontal cortex.17

Our data indicate that one reason that these previous studies

may have failed to find strong encoding of impending reward is

that they were looking for a population response of neurons

time-locked to the presentation of reward-predicting stimuli

and/or persistent encoding. Indeed, taking the same analysis

approach of aligning the activity of neurons classified as encod-

ing to the onset of predictive stimuli, we similarly found that the

proportion of neurons in subcallosal ACC and rostromedial stria-

tum signaling impending rewardwas substantially lower and less

sustained in nature than in BLA (Figures 2, 3, and 4). Instead,

neurons in subcallosal ACC and rostromedial striatum appear

to encode impending reward at specific times before the reward

is delivered using punctate bursts of activity. Across recorded

neurons, these bursts tile the period until reward is delivered

(Figure 5) and are specific to a time after stimulus onset

(Figures 6B and 6C), a pattern that would have likely been

obscured by standard analytical approaches that average activ-

ity across neurons in a population (for example, Figure 2C).

Recent studies in dorsal ACC and orbitofrontal cortex (OFC)

have reported that anticipated reward is signaled using both sus-
12 Neuron 111, 1–15, November 15, 2023
tained and temporally specific encoding schemes.38,39 This is

qualitatively similar to what we found in BLA, where both encod-

ing schemes were intermingled. In subcallosal ACC as well as

rostromedial striatum, by contrast, temporally specific encoding

was more prominent. The existence of separable encoding

schemes—sustained and temporally specific—is theorized to

play different roles in signaling future events. Sustained encod-

ing is postulated to be required to organize behaviors in anticipa-

tion of events, providing a fixed point for other areas to sample

from.40 By contrast, temporally specific encoding is more critical

for precisely timing events of interest such as rewards or punish-

ments as well as providing a more efficient way to provide pop-

ulation-level-signals to downstream areas.41 That subcallosal

ACC predominantly exhibits one of these schemes further indi-

cates that sustained and temporally specific encoding might

be generated by different functional interactions between br-

ain areas.

Our analyses also revealed other differences between areas

related to how single neurons signaled distinct task features.

Notably, encoding in subcallosal ACC and rostromedial striatum

was less related to the type of reward that would be delivered

compared with BLA. Although roughly two-thirds of neurons in

BLA that were responsive to the task conditions encoded the

different types of rewards that would be delivered on each trial,

the proportions in subcallosal ACC and rostromedial striatum

were substantially lower (Figure 2F). Note, that we also found lit-

tle evidence of spatial position or movement encoding within

subcallosal ACC, unlike previous reports.17,25 A lack of such en-

coding potentially provides evidence that signals in subcallosal

ACC are less indicative of aspects of movement invigoration

and are potentially more related to the affective qualities or moti-

vation significance of the anticipated reward.

Temporally specific patterns of neural activity
in anticipation of reward
Sequential patterns of activity across populations of neurons

are hypothesized to be an evolutionarily conserved motif for

signaling information in neural circuits.42 Although temporally

specific sequences of neural activity have been most closely

associated with the hippocampus28,43 and other medial tempo-

ral lobe structures,30,44 task-related neural sequences have also

been characterized in other cortical and subcortical areas.26,27,41

Because our analyses were primarily at the level of pseudopopu-

lations of neurons recorded on different days, they should not be

considered as sequences of neural activity that are generally

identified in groups of simultaneously recorded neurons. Our re-

sults do, however, provide evidence that sequence-like, tempo-

rally specific encoding schemes are present in macaque frontal

cortex and are specifically engaged to signal anticipated reward

(Figures 5, 6, 7, and 8).

By characterizing temporally specific patterns of neural activ-

ity using an unbiased computational approach, seqNMF, we

were further able to identify patterns of activity across the whole

population of neurons in the three recorded areas, not just those

classified as encoding the different task conditions. This not only

confirmed our findings conducted on a more restricted dataset

(Figures 5 and 6) but also revealed subtle differences in the

prominence of the specific patterns of activity depending on
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the trial conditions or individual subject. In particular, in rostro-

medial striatum, we identified a single, unique, and highly repli-

cable pattern of activity in both monkeys. The mean amplitude

of this factor across trial types discriminated between rewarded

and non-rewarded trials (Figure 8), and in monkey H, it discrim-

inated all three conditions. Prior work in rodents has identified

sequences of neural activity in striatum related to timing

behavior.41 Thus, our findings indicate that these patterns of

neural activity in striatum are scaled by reward anticipation.

In both subcallosal ACC and BLA, we also identified temporally

specificpatterns of neural activity using seqNMF, but here the fac-

tors corresponding to unique patterns of activity were less similar

between subjects. In subcallosal ACC, a single factor was identi-

fied in both subjects, whereas in BLA, we identified two distinct

factors in monkey D but only one in monkey H. The amplitude of

these factors also differentially scaled between the animals,

such that in monkey D, there was evidence across both subcal-

losal ACC and BLA that the amplitude of the temporally specific

patternsofactivity scaledbywhether themonkeywasanticipating

the delivery of juice or not. Such differential scaling of the patterns

of activity was not observed in monkey H. Note that such differ-

ences were only apparent at the level of temporally specific pat-

terns of activity as the proportion of neurons in each subject that

signaled different aspects of the task was similar (Figure S2).

As we noted earlier, such differences in the factors identified

by seqNMF in subcallosal ACC and BLA could simply be due

to fewer neurons being available for analysis in monkey H. Alter-

natively, the divergence in the number of factors and amplitude

of the patterns of activity observed in subcallosal ACC and

BLA between monkeys D and H could, we speculate, help to

explain the individual differences in autonomic responses to

the stimuli that were observed in the Pavlovian task (Figure 1C).

Note that even in large populations of simultaneously recorded

neurons, differences in the number of factors identified are

apparent across subjects.33 A recent study in macaques re-

ported inter-subject variability in behavior and neural activity in

the context of information seeking.45 Thus, the differences in

the patterns of temporally extended activity could potentially

be related to individual differences in the task. Confirming the

direct relationship between temporally specific patterns of activ-

ity and autonomic responding will, however, require simulta-

neous monitoring of neural and physiological activity, a level of

resolution not available here.

Conclusions
Our analyses identified that temporally specific patterns of neu-

ral activity are engaged to signal anticipated reward, especially in

subcallosal ACC and rostromedial striatum. Their presence in

both tasks indicates that they are not simply caused by a narrow

set of experimental parameters or task settings. Instead, they are

likely caused by specific circuit-level interactions. All three areas

recorded receive monosynaptic inputs from hippocampus.46,47

Neural sequences are prominent in hippocampus during spatial

navigation and associative learning.48 Cross-talk between hip-

pocampus and subcallosal ACC is essential for adaptive pat-

terns of emotional responding,49,50 potentially indicating that

interaction with hippocampus could be what drives temporally

specific patterns of activity in subcallosal ACC as well as
BLA and striatum. Alternatively, temporally specific patterns of

activity within a brain area could be the result of local circuit in-

teractions. Either way, determining how this specific neural

mechanism contributes to affective regulation in more complex

task settings will be essential for determining how these circuits

contribute to psychiatric disorders characterized by alterations

in reward processing.
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Peter Rudebeck (peter.

rudebeck@mssm.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Behavioral and neurophysiological data reported in this paper are available for public download at Zenodo. DOIs are listed in

the key resources table.

d This paper does not report original code and instead used standard functions in MATLAB or MATLAB code from Mackevicius

et al.33

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two experimentally naı̈ve adult rhesus macaques (Macaca mulatta), one female (Monkey D) and one male (Monkey H), served as

subjects. They were 5.6 and 11.0 kg and 16 and 11 years old, respectively, at the beginning of training. Animals were pair housed

when possible, kept on a 12-h light-dark cycle, tested during the light part of the day, and had access to food 24 hours a day.

Throughout training and testing each monkey’s access to water was controlled for 6 days per week. All procedures were reviewed

and approved by the Icahn School of Medicine Animal Care and Use Committee.

METHOD DETAILS

Apparatus
Monkeys were trained to perform Pavlovian and instrumental visually-guided tasks for fluid rewards. Visual stimuli were presented

on a 19-inch monitor screen located 56 cm in front of the monkey’s head. During all training and testing sessions monkeys sat in a

custom primate chair with their heads restrained. Choices on the screen were indicated by gaze location. Eye position and pupil

size were monitored and acquired at 90 frames per second with a camera-based infrared oculometer (PC-60, Arrington Research,

Scottsdale, AZ). Heart rate was monitored by recording electrocardiogram (ECG) using a dedicated Biopac recording amplifier

(ECG100C Goleta, CA) with the matching IPS100c power supply and MAC110c leads. Fluid rewards were delivered to the mon-

keys’ mouths using a custom-made pressurized juice delivery system (Mitz, 2005) controlled by a solenoid. All trial events, reward

delivery, and timing were controlled using the open-source behavioral control software MonkeyLogic (https://monkeylogic.nimh.

nih.gov).
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Behavioral task training and testing
Through successive approximation, subjects were trained to maintain their gaze on a centrally located red spot to receive a fluid

reward. The delay to reward was then increased until both subjects were reliably fixating for 4 seconds. A Pavlovian trace condition-

ing procedure was subsequently superimposed within this fixation task.

Subjects were trained to initiate a Pavlovian trial by fixating on a red fixation point superimposed on a centrally located gray square

for 800-1000 ms. Then, one of four trial types was randomly presented with equal frequency. On CS+juice, CS+water and CS- trials, a

conditioned stimulus predicting juice (0.5 ml), water (0.5 ml) or no reward was presented behind the fixation spot for 1000 ms in the

center of the screen, followed by a 500-600ms trace interval in which the CS again was replaced by the neutral gray square. After the

trace interval, the predicted Pavlovian reward was delivered. On neutral trials, instead of a conditioned stimulus, the neutral gray

square remained onscreen after fixation and through the rest of the trial. In one-fifth of such trials (5% of total trials), an unsignaled

juice reward (0.5 ml) was delivered 1300-1700 ms after fixation. Finally, on all trials, a set of three small (0.1ml) juice rewards were

delivered as a reward for successful trial completion 2000 ms after stimulus onset (300-700 ms after Pavlovian reward depending

on trial type and trace interval length). Intertrial intervals varied from 2500-4000 ms. Breaking fixation at any point during a trial trig-

gered a timeout interval of 4000 ms before the start of the next trial. Conditioned stimuli varied between subjects and consisted of

luminance-matched gray shapes, covering 1.10� of visual angle for monkey D and 2.45� for monkey H.

Subjects also performed an instrumental choice task. Here they made choices between pairs of stimuli from the Pavlovian task

(Figure 1B). Subjects initiated a trial by fixating on a central red spot for 500 ms, after which two of the three stimuli (drawn by random

selection) were shown simultaneously to the left and right side of the fixation spot. All three stimuli were shown with equal frequency

with equal probability on each side of the screen. After a variable offer period ranging from 600-2200 ms, the fixation spot turned off,

indicating that the monkey had 700 ms to select one of the stimuli by making a saccade and holding fixation on the chosen stimulus

for 50 ms. The chosen reward (0.5 ml of juice or water or no reward) was then delivered. Failure to hold fixation when instructed or

failure to choose a stimulus within 700 ms of the fixation spot being turned off led to a 4000 ms timeout interval before the next trial.

Stimuli for the instrumental task used the same shapes that each subject learned in the Pavlovian task and covered 2.45� of visual
angle for both subjects.

Surgical procedures
All surgical procedures were conducted in a dedicated operating room under aseptic conditions. Anesthesia was induced with

ketamine hydrochloride (10 mg/kg, i.m.) and maintained with isoflurane (1.0-3.0%, to effect). Monkeys received isotonic fluids via

an intravenous drip. We continuously monitored the animal’s heart rate, respiration rate, blood pressure, expired CO2 and body tem-

perature. Monkeys were treated with dexamethasone sodium phosphate (0.4 mg/kg, i.m.) and cefazolin antibiotic (15mg/kg, i.m.) for

one day before and for one week after surgery. At the conclusion of surgery and for two additional days, animals received ketoprofen

analgesic (10-15 mg/kg, i.m.); ibuprofen (100 mg) was administered for five additional days.

Each monkey was implanted with a titanium head restraint device and then, in a separate surgery, a plastic recording chamber

(27 x 36 mm) was placed over the exposed cranium of the left frontal lobe. The head restraint device and chambers were fixed to

the cranium with either titanium screws alone or titanium screws plus a small amount of dental acrylic. Just prior to recording the

cranium overlying the recording targets was removed under general anesthesia.

Physiological and neural recordings
ECG was recorded using surface electrodes (Kendall Medi-Trace 530 Series Foam Electrodes, Covidien, Mansfield, MA) placed on

the back of the neck. Placements are varied from day-to-day to avoid irritating a single patch of skin. ECG signals were then low pass

filtered (4 pole Bessel) at 360 Hz, then digitized at 1000 samples/s and recorded on the neurophysiology recording amplifier along

with pupil size measurements. Both ECG and pupil size were then processed to remove artifacts (periods of high noise where

R-peaks could not be discerned or blinks) using previously validated methods.51 After processing all ECG and pupil signals were

visually inspected for quality and sessions where there were prolonged periods of noise, signal drop out, or amplifier saturation

were excluded from further analysis. This screening processmeant that there were 78 and 66 sessions for monkeys H andD available

for analysis, respectively.

Potentials from single neurons were isolated with tungsten microelectrodes (FHC, Inc. or Alpha Omega, 0.5-1.5 M at 1 KHz) or

16-channel multi-contact linear arrays (Neuronexus Vector array) advanced by an 8-channel micromanipulator (NAN instruments,

Nazareth, Israel) attached to the recording chamber. Spikes from putative single neurons were isolated online using a Plexon Multi-

channel Acquisition Processor and later verified with Plexon Offline Sorter on the basis of principal-component analysis, visually

differentiated waveforms, and interspike intervals. If the waveforms on a channel failed these criteria for single neurons but were

differentiated from the noise they were saved and analyzed as multi-unit activity.

Subcallosal ACC recordingsweremade on themedial surface of the brain ventral to the corpus callosum (Figure 2D). All recordings

in subcallosal ACC were between the anterior tip of the corpus callosum and the point where structural MRIs were unable to distin-

guish the medial cortex from the striatum, corresponding to roughly the most anterior point of the septum. This corresponds to be-

tween 31.5 to 26.5 mm anterior to the interaural plane. Neurons in basolateral amygdala were primarily recorded in basal and lateral

nuclei at least 4 mm ventral to the first neurons that could be discerned after crossing the anterior commissure. Neurons in amygdala

were recorded between 22 and 18.5 mm anterior to the interaural plane. Recordings in striatum were made in the rostro-medial
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segment corresponding to the zone where subcallosal and basal amygdala projections overlap.21,22 Neurons in striatum were re-

corded between 28 to 24mmanterior to the interaural plane. Recording sites were verified by T1-weightedMRI imaging of electrodes

at selected locations in subcallosal ACC, basolateral amygdala and striatum after recordings had been completed (Figure 2D).

Neurons were initially isolated before monkeys were engaged in any task. However, in some cases neurons were isolated during

the Pavlovian task and these neurons were then recorded in the instrumental version of the task. Other than the quality of isolation,

there were no selection criteria for neurons.

Data analysis
Autonomic and behavioral analysis: To control for across session difference in baseline pupil size and heart rate, data for each ses-

sion were processed using custom software to remove artifacts and blinks51 and then normalized using a z-score prior to analyses

(z = (x-m) / s). Pupil dilation was baseline corrected to a 500-ms period extending 250 ms before to 250ms after the onset of CS. This

baseline procedure meant that pupil size had the maximum time to stabilize before the presentation of conditioned stimuli (earliest

responses are typically after 250ms). Autonomic datawere analyzed separately for eachmonkey usingmixed-effects ANOVAmodels

with trial type as amain effect and session as a random effect. For the heart rate analysis, a period from 1200 - 2700ms after stimulus

onset was analyzed. This took into account the time it takes for the heart rate to start changing in response to an external event. For

pupil size, a period of 1250-1750 ms after stimulus onset was analyzed. This took into account both the time for pupil size to start

changing in response to an external event as well as the time for the pupil to fully stabilize which is �250 ms. Only sessions where

there were at least 15 trials of each of the neutral, CS+juice, CS+water and CS- were analyzed. While the analysis of the heart rate data

included all trial types, for the analysis of pupil dilation only CS+juice, CS+water, and CS- trials were included. This is because adding a

stimulus as is the case in these trials causes the pupil to refocus (Figure S1), meaning that CS- trials are a fair control for the CS+juice

and CS+water trials.

For the analysis of instrumental choices and response times, choices were registered whenmonkeysmade a saccade to one of the

two stimuli presented on the screen. For each session, the mean number of choices for each condition was computed and analyzed.

Choice response latencies for each trial typewere computed by taking the amount of time from the go signal to the selection of one of

the stimuli (Figure 1). Latencies for each trial type were averaged across sessions and analyzed separately for each monkey using a

mixed effects ANOVA with trial type as a main effect and session as a random effect.

Neurophysiology analysis: For analysis of neurophysiology data, only neurons or multi-unit activity that were stably recorded for at

least 35 trials were analyzed and it is the activity of those neurons that we report here Task conditions with too few trials for reliable

analysis were not included. Specifically, for the Pavlovian task, the unexpected reward condition was not analyzed as thesemade up

only 5% of total trials. In the instrumental choice task, trials where the CS- was chosen were not included in the analysis as 180/421

units had no CS- choice trials. Overall, there was only a mean of 2.18 trials with CS- chosen per session. For the Pavlovian task the

mean number of trials per neuron was 128 (standard deviation: 50.12) whereas for the instrumental task it was 97 (standard devia-

tion: 44).

To quantify encoding differences between areas we first computed smoothed spike rate functions for each neuron on each trial

using a 201 ms window in 10 ms steps on a period of 2.5 seconds starting 500 ms before stimulus presentation and ending

2000 ms after stimulus presentation. These smoothed spike rate functions were then analyzed using an ANOVA producing an array

of 250 p-values for each neuron. The ANOVAmodel included a single parameter of trial type (4 levels) for the Pavlovian task, while the

instrumental task was analyzed with a model including chosen stimulus (2 levels, water or juice), response (2 levels, left or right side),

and their interaction. This array was then divided into five equal epochs of 500ms/50 bins; a baseline period (-500 – 0ms), stimulus 1st

half (0 – 500ms), stimulus 2nd half (500 – 1000ms), trace (1000 – 1500ms), and reward (0-500ms after reward delivery). Neurons were

classified as encoding a task variable within one of these epochs if they met a threshold of p < 0.007 for 3 consecutive steps within

that epoch. This is what is shown in Figure 2B. The threshold was determined by selecting values that produced a false discovery rate

during the baseline period of < 2-3% (see STARMethods). Thus, the proportion of neurons classified as encoding trial type during the

baseline period provides an estimate of the false discovery rate in Figures 2B and 2C. What we describe in the results section is the

combination of both single andmultiunit responses as there were no differences between analyses conducted on either dataset (Fig-

ure S2). Similarly, data are collapsed across both subjects as there were few differences (Figure S2).

In the instrumental task, the sliding window analysis was conducted on 4 equal periods of 500 ms: baseline (-500 – 0 ms before

stimulus onset), stimulus 1st half (0 – 500 ms after stimulus onset), stimulus 2nd half (500 – 1000 ms after stimulus onset), and reward

(0-500ms after reward delivery). Follow up sliding-window ANOVA analyses comparing reward presence (CS+water or CS+juice versus

CS- or neutral, 2 levels) and reward type (CS+water or CS+juice, 2 levels) during the stimulus and reward periods used the same

threshold for classification as above, 3 consecutive bins at p<0.007.

To compare between the proportion of neurons classified in each area we used the Gaussian approximation test on proportions.

The threshold for significance, p=0.0167 was adjusted using a false discovery rate correction procedure for time-series data.52 Dura-

tion of encoding of conditioned stimuli in each area was compared using a Kruskal-Wallis test on the number of significant bins/

amount of time of encoding during the combined stimulus and trace period in the Pavlovian task and the stimulus period in the instru-

mental task. For this analysis the longest contiguous number of bins/amount of time for each neuron was analyzed.

To compare the duration and shape of the patterns of neuronal responses to conditioned stimuli in subcallosal ACC, BLA and ros-

tromedial striatum, we first established the ‘‘preferred’’ and ‘‘anti-preferred’’ conditions for each neuron using the change in z-scored
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firing rate from baseline after stimulus presentation. First, we calculated a single mean firing rate for each neuron for each condition

during the stimulus on (instrumental) or stimulus on and trace (Pavlovian) periods. Then we determined which condition had the

maximum (preferred) firing rate and which condition had the minimum (anti-preferred) firing rate for each neuron. Second, we calcu-

lated the difference in firing rates for each neuron between the preferred and anti-preferred conditions. Taking the mean firing rates

from each condition across trials for 10ms bins (as above), we Z-scored the mean firing rates for the preferred trials and the anti-

preferred trials to the baseline activity 500ms before stimulus on. Then the sequence of Z-scored mean firing rates for the anti-

preferred condition were subtracted from the Z-scoredmean firing rates for the preferred condition to obtain a sequence of preferred

vs. anti-preferred firing rate differences for each neuron. Third, we identified the longest segment of differences in Z-scored mean

firing rates that was greater than a threshold of 3. These segments were aligned around their centers of mass, peak normalized,

and averaged for each area to get a mean response shape for each area. Finally, an ANOVA was conducted on the log normalized

length of firing rate differences to compare between brain areas.

In order to assess the stability of peak encoding times for each neuron, a 50% subsample of trials was taken randomly for each

neuron 500 times and an ANOVA run on each subsample as above. The time bin with the highest percent explained variance was

recorded for each subsample. This analysis included only neurons with significant reward encoding in the entire trial set that were

stably recorded for a minimum of 70 trials, to ensure a minimum of 35 trials in each subsample. As a measure of the stability of

this peak encoding point, we compared the distribution of maximum encoding points for all sampled 50 percent of trials to that of

the remaining 50 percent for all 500 samples for each neuron.We also compared themaximal encoding timepoints between circularly

shuffled and unshuffled data taking the same approach as above. In both cases the distributions of maximum encoding points were

compared using a Kolmogorov-Smirnov test for each neuron.

To further test whether neurons in each area are encoding reward in a stable temporally specific pattern relative to other neurons in

the pseudopopulations, we adapted a form of the matching index analysis developed by Ji and Wilson.32 Here we generated a list of

peak encoding times for each neuron by conducting the sliding ANOVA analysis on 50% of the trials for each neuron. Then each

neuron was ordered based on these peak encoding times in each area. The same was done for each neuron for the other 50% of

trials. This produced two sets of ordered neurons for each area. We then compared the position of each neuron in these two sets

of ordered neurons using a matching index that compares the positions of each neuron in the ordered set. The matching index MI

is given as MI = (m - n) / (m + n) where m is the number of pairs that are in the same order and n is the number of pairs of neurons

that were in a different order. This procedure was repeated 500 times producing a distribution ofmatching indices. The overall match-

ing index for an area is given as the mean of the matching indices from the 500 repeats. In addition, to confirm that results from the

matching index analysis were not simply related to neuron population size, we repeated the above matching index analysis using

subsamples of 35 neurons from BLA and rostromedial striatum, the size of the smallest population (subcallosal ACC). Here subsam-

pling the neurons in BLA and rostromedial striatum pseudopopulations did not alter the results.

To assess the significance of the computed matching indices, we calculated the distribution of indices that would be calculated

from randomized data to test whether the order of peak encoding times is randomly arranged. To do this, we generated a set of

random numbers the length of the number of neurons analyzed in each area and calculated the matching indices for 1,000,000

random iterations. The p-value for each experimental matching index was then calculated as the probability that the matching index

would be generated from randomized data of that length.

SeqNMF: We characterized the temporally specific patterns in the population neural activity recorded from subcallosal ACC, ros-

tromedial striatum and BLA data using an unsupervised machine learning approach that applies non-negative matrix factorization

(NMF) to neural data, seqNMF.33 seqNMFwas developed to extract repeatable patterns of activity from high dimensional data. While

the original paper emphasizes the potential applications of seqNMF to simultaneously recorded neurons, this method is agnostic to

data type and was developed and tested not only on neural data but also on song spectrograms. For this analysis, we used spiking

activity on trials where stimuli were presented (CS+juice, CS+water and CS-) starting fromwhen the stimuli were presented to the end of

the trace intervals in the Pavlovian task (1500ms total). We included all neurons, irrespective of whether they had been classified as

encoding the trial types in the Pavlovian task, that had at least 20 trials for each of the CS+juice, CS+water, and CS- trials (60 trials total).

This yielded 115, 100, and 124 total neurons from subcallosal ACC, rostromedial striatum, and BLA respectively in subject D, and 59,

83, and 68 respectively in subject H. For each of these neurons, 20 trials were randomly drawn for each of the three trial types and

these were concatenated to construct a virtual time series. Zero padding was added between trial segments to prevent detection of

spurious factors across trial segment boundaries (as is shown in Figure 7A). Neural activity was smoothed with a 150 ms half-

Gaussian window. Smoothing with a 50 ms half-Gaussian was also conducted, yielding largely similar results.

SeqNMFdiffers fromother forms of non-negativematrix factorization, such as convolutional NMF34 in its inclusion of a penalty term

in the overall cost function called the x-ortho penalty, themagnitude of which is scaled by the hyperparameter, l. The x-ortho penalty

suppresses the extraction of multiple factors to explain different instances of the same factor and is computed as such: for a given

factor in W, we compute its overlap with the data at time t (WTX). We then compute the pairwise correlation between the smoothed

temporal loading (SH) of each factor and the overlap of every other factor in W with the data, such the correlation cost can be written

as l || (WTX) SHT || 1, i �=j. Because redundant factor will have a high degree of overlap with the data at the same times despite having

segregated temporal loadings, this penalty causes any factor that highly overlaps with the data at a given time to suppress the tem-

poral loadings of any other factor that also highly overlap with the data at that time. The overall cost function also incorporates recon-

struction cost, or the element-by-element sum of all squared errors between a reconstruction X and original data matrix X. The
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reconstruction X is obtained from the sum of the outer product of w and h, where w is the column vector representing neural factor

and h is the row vector representing times and amplitudes at which that factor occurs, such that reconstruction cost = || X - WH ||2F.
Higher values of l suppress all but one factor to zero amplitude, leading to large reconstruction error if more than one ground-truth

sequence exists, while an excessively low lmay cause seqNMF to producemultiple factors to explain different instances of the same

factor. As a result, determining the true number of ground-truth temporally specific patterns of neural activity depends on appropriate

selection of l. We implemented the method described in Mackevicius et al.33 to select an appropriate l: we ran 20 iterations of

seqMNF at each of a range of values of l, obtained the average reconstruction error and correlation cost terms at each l, and chose

l near the crossover point l0 which yielded an approximate balance between the two, either l =1 l0, or l =1.5 l0. In the event that

most runs returned a single factor, we also compared our factors extracted from optimized seqNMFwith factors extracted by setting

l=0 (i.e. non-penalized convolutional NMF). If a similar result was obtained with l=0, this value was used. As a result of this optimi-

zation procedure, lwas set to 0, 0, and 1 for subcallosal ACC, rostromedial striatum, and BLA, respectively. For monkey D, lwas set

to 1 for rostromedial striatum to reduce spurious temporally specific patterns of neural activity.

Once we had chosen an appropriate l for each area, we re-ran seqNMF for 20 iterations at the selected l. In order to assess the

significance of extracted factors, we employed a 75%/25% training/testing split balanced to have an equal number of trials for each

of the three trial types for both the training set and testing set. As a result, seqNMF was trained on 45 trials and tested on 15 trials for

each region (15 versus 5 for each region). For each iteration, we test for factor significance using the held-out test dataset by

comparing the skewness of the distribution of overlaps (W’X, where W = factor tensor and X = data) between each factor and the

held-out data with the null case. The overlap of a factor with data will be high at timepoints during which the factors occurs, leading

to a high skewness of theW’X distribution. From these 20 iterations, we also obtained 1) the temporal loadings for each factor across

the time epoch of interest, 2) an average value for reconstruction power (percent variance in the data explained by a given factoriza-

tion), and 3) the distribution for the number of significant factors found. To compare within and between each factor for each trial type,

we conductedmixed-effect ANOVA on themean of the temporal loadings (H) across the runs for each factor separately with trial type

as a main effect and run as a random effect.

Control analyses for seqNMFwere conducted using identical free parameters to those optimized for the stimulus and trace interval.

First, seqNMF was conducted on the last 1500 ms of the ITI of each trial. This analysis thus maintained the trial progression and

spiking statistics but lacked the trial structure. Second, to maintain the trial events in the data, we randomly shuffled the spike times

of all neurons on all trials, then smoothed the data, and reran seqNMF. This analysis therefore maintained the overall spike rate in the

window of analysis but altered the timing of spikes. Third, to specifically test whether the timing of bursts of spike activity was essen-

tial for temporally specific sequences we circularly shifted the neural activity in each trial for each neuron, then smoothed the data,

and ran the seqNMF analyses. For example, if on a trial the spike times were all shifted forward by 518 ms, those spikes occurring

after 982 ms were moved to the start of the trial in a circular manner. This procedure thus maintained the exact same firing patterns

(i.e. inter-spike intervals were maintained) on each trial, but randomly shifted their timing. For each of these control analyses we

compared the number of significantly extracted factors to those recovered from non-shuffled data during the stimulus and trace in-

tervals (Figures 8, S6, and S7).

In order to determine whether differences in the number of temporally specific patterns of neural activity identified in the BLA of

monkeys H and Dwas a function of the number of neurons available for analysis, we conducted a subsample analysis. Random sub-

samples of 68 neurons from monkey D selected from the larger population of 124 to match those available in monkey H. Data were

then smoothed and seqNMF was conducted using standard parameters. This procedure was repeated 100 times. The distributions

of identified factors were compared to the full sample as well as the distribution of seqNMF runs returning 1 or 2 sequences

(Figure S8).
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